Advanced
Performance Analysis of Spectrum Sharing Cognitive Radio Networks over Double Rayleigh Fading Channels
Performance Analysis of Spectrum Sharing Cognitive Radio Networks over Double Rayleigh Fading Channels
Journal of Broadcast Engineering. 2014. Mar, 19(2): 272-275
Copyright © 2014, The Korean Society of Broadcast Engineers
  • Received : January 24, 2014
  • Accepted : March 05, 2014
  • Published : March 30, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
주현 이
ljh1112@snu.ac.kr
재홍 이

Abstract
본 논문에서는 스펙트럼 공유 인지 무선 네트워크를 다룬다. 2차 사용자 네트워크의 채널을 더블 레일리 페이딩으로 가정하였을 때 정확한 불능 확률 값을 수식유도를 통해 구하고 불능 확률의 근사식 또한 얻어낸다. 모의실험을 통해 분석한 불능 확률이 정확함을 확인하였고 1차 사용자에서의 최대 허용 간섭 변화에 따른 성능변화를 확인하였다.
Keywords
Ⅰ. 서 론
인지 무선 네트워크(cognitive radio network)는 한정된 자원인 채널 대역폭을 효과적으로 사용할 수 있게 도와주기 때문에 최근에 활발히 연구되고 있다 [1] . 이러한 인지 무선 네트워크 중 스펙트럼 공유 (spectrum sharing) 인지 무선 네트워크에서는 1차 사용자가 허용할 수 있는 간섭 이내에서 2차 사용자가 1차 사용자의 스펙트럼을 동시에 사용한다.
한편 더블 레일리 페이딩 (double Rayleigh fading) 채널 모델은 수신기와 송신기 주변에 형성된 독립적인 산란체 (scatterer) 그룹들로 인해 두 개의 레일리 페이딩 채널이 존재한다고 가정하는 모델이다 [2] . 이러한 더블 레일리 페이딩 채널 모델은 차량 통신에서의 채널 모델 중의 하나로 관심을 받았고 이를 적용한 통신 시스템에 대한 분석이 많이 이루어졌다 [3] .
최근 중계기가 존재하는 스펙트럼 공유 인지 무선 네트워크에 다양한 채널 모델을 적용하여 성능을 분석하는 연구가 진행되고 있다 [4] . 하지만 채널을 더블 레일리 페이딩으로 모델링을 한 스펙트럼 공유 인지 무선 네트워크에 대한 성능 분석은 현재까지 이루어지지 않았다. 채널을 더블 레일리 페이딩으로 모델링한 인지 무선 네트워크의 경우 차량통신을 인지 무선 네트워크에 적용시키는 연구로 확장시킬 수 있기 때문에 이에 대한 성능 분석은 필요하다.
본 논문에서는 스펙트럼 공유 인지 무선 네트워크를 다룬다. 2차 사용자 네트워크의 채널을 더블 레일리 페이딩으로 가정하였을 때 정확한 불능 확률 식을 수식유도를 통해 구하고, 최대 허용 간섭 증가에 따른 불능 확률의 근사식 또한 얻어낸다.
본 논문의 구성은 다음과 같다. 2절에서는 시스템 모델을 설정하고 설정한 시스템 모델에 대한 불능 확률을 수식적으로 유도한다. 3절에서는 분석된 결과를 모의실험을 통한 값과 비교, 분석하며, 마지막으로 4절에서는 본 논문에 대한 결론을 맺는다.
Ⅱ. 시스템 모델 및 성능 분석
- 1. 시스템 모델
본 논문에서는 그림 1 과 같은 스펙트럼 공유 인지 무선 네트워크를 가정한다. 1차 사용자 네트워크에는 하나의 수신기(PD)만 존재하고, 2차 사용자 네트워크에는 하나의 송신기(SS)와 수신기(SD)가 존재하고 K 개의 중계기(SR) 중 하나의 중계기가 복호후재전송 기법을 사용하여 통신을 돕는다고 가정한다. 또한 1차 사용자의 QoS(quality of service)를 보장하기 위해 2차 사용자간의 통신으로부터 발생되는 간섭의 영향이 최대 허용 간섭 Q를 넘지 않도록 전력을 조절하여 통신을 하게 된다. 2차 사용자 네트워크상의 채널 모델은 더블 레일리 페이딩으로, 2차 사용자들과 PD 사이의 채널은 일반적인 레일리 페이딩으로 모델링하였다. 이러한 채널 모델은 2차 사용자 네트워크에서 차량간 통신이 이루어지고 1차 사용자가 노변 상의 교통 인프라인 인지 무선 차량 네트워크에 적용 가능하다.
PPT Slide
Lager Image
스펙트럼 공유 인지 무선 네트워크에서의 시스템 모델 Fig. 1. System model for spectrum sharing cognitive radio networks
그림 1 에 표기한 것과 같이 hi,j 는 분산이 1/ λi,j 인 노드 i 와 노드 j 사이의 채널 계수를 나타낸다. hS,k hk,D 는 더블 레일리 페이딩 채널 모델 가정에 의해 서로 다른 두개의 복소 가우시안 랜덤 변수의 곱으로 표현될 수 있다. 따라서 hS,k = h S,k,1 h S,k,2 , hk,D = h k,D,1 h k,D,2 와 같이 표현될 수 있다. 여기서 h S,k,1 h S,k,2 는 각각 분산이 1/ λk , 1 , 1/ λk , 2 이고 hS,k 에 해당하는 서로 다른 복소 가우시안 랜덤 변수이고 h k,D,1 h k,D,2 는 각각 분산이 1/ λk , 3 , 1/ λk , 4 이고 hk,D 에 해당하는 서로 다른 복소 가우시안 랜덤 변수이다. hsk,p hk,P 는 레일리 페이딩 채널 모델 가정에 의해 복소 가우시안 랜덤 변수로 모델링할 수 있다. 이 때, 복호후재전송 기법을 사용하므로 최적의 중계기 선택 방법은 다음과 같다 [5] .
PPT Slide
Lager Image
여기서 PSk 는 SS의 전송전력, Pk 는 SR k 의 전송전력을 나타낸다.
- 2. 성능 분석
각 SS 및 SR의 전송전력은 PD에서의 간섭이 Q를 넘지 않도록 설정해야 하기 때문에 PSk = Q /| hsk,p | 2 , Pk = Q /| hk,p | 2 과 같이 전송전력을 설정해야한다. 이로부터 전체 불능 확률을 다음과 같이 나타낼 수 있다.
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
여기서 Pth = N 0 (2 2R -1), N 0 는 잡음 분산, R은 목표 전송률이다. 또한 Uk , Vk 는 (3)에서의 두 개의 분수형태의 랜덤 변수를 각각 나타내고 FUk ( x ), FVk ( x )는 Uk , Vk 의 누적분포함수(CDF: cumulative distribution function)를 나타낸다. 그러므로 (5)에 의해 Uk , Vk 의 누적분포함수를 얻음으로써 전체 불능 확률을 구할 수 있다. Uk 의 누적분포 함수를 구하면 다음과 같다.
PPT Slide
Lager Image
여기서 ρk = λk , 1 λk , 2 / λsk,p 이고 ( • , • )는 불완전 감마함수(incomplete gamma function)이다 [6] . 이와 유사한 방법으로 FVk ( x ) 또한 구할 수 있다.
PPT Slide
Lager Image
와 같이 정의한다면, 구해진 Uk , Vk 의 누적분포함수를 이용하여 다음과 같이
PPT Slide
Lager Image
을 얻을 수 있다.
PPT Slide
Lager Image
여기서 kk = λk , 3 λk , 4 / λk,p 이다. 그러므로 (7)을
PPT Slide
Lager Image
에 대입하면 정확한 불능 확률 값을 얻을 수 있다. 하지만 (7)을 보면 알 수 있듯이 불능 확률이 불완전 감마함수로 표현되기 때문에 불능 확률을 폐형(closed-form)으로 나타낼 수 없다는 것을 알 수 있다.
만약 ρkη →0로 가정할 경우, 불능확률에 표현된 불완전 감마 함수는 테일러 급수를 이용하면 다음과 같은 형태로 근사시킬 수 있다 [6] .
PPT Slide
Lager Image
여기서 γ 는 Euler-Mascheroni 상수이다. 유사한 방법으로 kkη →0로 가정할 경우 (0, kkη )의 근사식을 구할 수 있고 구해진 근사식들을 (7)에 대입하면 다음과 같이
PPT Slide
Lager Image
의 근사식을 구할 수 있다.
PPT Slide
Lager Image
따라서 (9)를
PPT Slide
Lager Image
에 대입하면 최종적으로 불능 확률의 근사식을 구할 수 있다.
Ⅲ. 모의실험
모의실험에서는 R = 1bps/Hz로 설정하였고 모든 k에 대하여 λs,k = λs,D = 1로 가정하였다. 또한 모든 k에 대하여 λsk,p = λk,P = λ 로 가정하였다.
그림 2 는 중계기 수 K 값의 변화에 따른 불능 확률을 비교하고 있다. 그림에서 선은 수식 (9)를 이용해 얻어진 근사된 불능 확률을 나타내고 기호는 모의실험을 통해 얻어진 정확한 불능 확률을 나타낸다. 그림 2 의 모의실험 결과를 통해 불능 확률의 참값과 근삿값과의 오차가 크지 않음을 확인할 수 있다. 또한 채널을 일반적인 레일리 페이딩으로 모델링 했을 때와 마찬가지로 다이버시티 이득을 얻음을 확인할 수 있다.
PPT Slide
Lager Image
중계기 수 K 값의 변화에 따른 불능 확률 비교 Fig. 2. Exact and approximate outage probabilities versus Q/N0 using different K
그림 3 은 다양한 λ 값에 대한 불능 확률을 비교하고 있다. λ 값이 증가할수록 1차 사용자와 2차 사용자 간의 채널 상태가 나빠지게 되고 이로 인해 2차 사용자는 더 큰 전송전력을 사용할 수 있다. 이와 같은 이유로 인해 그림 3 과 같이 λ 값이 증가할수록 2차 사용자의 불능 확률이 낮아지는 것은 자명하다. 또한 λ = 10 또는 λ = 100인 경우 그림 2 와 마찬가지로 불능 확률의 참값과 근삿값과의 오차가 크지 않음을 확인할 수 있다. λ = 1 인 경우는 Q / N 0 값이 감소할수록 오차가 커짐을 확인할 수 있는데 이는 최종적인 근사식이 ρkη →0, kkη →0라는 가정으로부터 얻어지므로 λ 값과 Q / N 0 값이 감소할수록 위의 가정에 위배되기 때문이다.
PPT Slide
Lager Image
다양한 λ 값에 대한 불능 확률 비교 Fig. 3. Exact and approximate outage probabilities versus Q/N0 using different λ
Ⅳ. 결 론
본 논문에서는 다중 중계기가 존재하는 스펙트럼 공유 인지 무선 네트워크에서 2차 사용자 네트워크의 채널이 더블 레일리 페이딩일 때 성능 분석을 하였다. 최적의 중계기 선택 조건과 2차 사용자 네트워크에서의 수신기 및 중계기의 최적 전력 할당을 알아내고 2차 사용자 네트워크의 불능 확률을 분석하였다. 모의실험을 통해 분석한 불능 확률 값이 정확함을 확인하였고 2차 사용자 네트워크의 채널을 일반적인 레일리 페이딩으로 모델링 했을 때와 마찬가지로 다이버시티 이득을 얻음을 확인할 수 있다.
References
Goldsmith A. , Jafar S. , Maric I. , Srinivasa S. 2009 “Breaking spectrum gridlock with cognitive radios: an information theoretic perspective,” Proc. IEEE 19 894 - 914    DOI : 10.1109/JPROC.2009.2015717
Kovacs I. Z. , Ph.D. dissertation 2002 “Radio channel characterisation for private mobile radio systems: mobile-to-mobile radio link investigations,” Aalborg Univ. Aalborg, Denmark Ph.D. dissertation
Ilhan H. , Uysal M. , Altunbas I. 2009 “Cooperative diversity for inter-vehicular communication: performance analysis and optimization,” IEEE Trans. Veh. Technol. 58 (7) 3301 - 3310    DOI : 10.1109/TVT.2009.2014685
Tourki K. , Qaraqe K. A. , Alouini M.-S. 2013 “Outage analysis for underlay cognitive networks using incremental regenerative relaying,” IEEE Trans. Veh. Technol. 62 (2) 721 - 734    DOI : 10.1109/TVT.2012.2222947
Bletsas A. , Shin H. , Win M. Z. 2007 “Cooperative communications with outage-optimal opportunistic relaying,” IEEE Trans. Wireless Commun. 6 (9) 3450 - 3460    DOI : 10.1109/TWC.2007.06020050
Gradshteyn I. S. , Ryzhik I. M. 2000 Table of Integrals, Series, and Products 6th ed. Academic Press San Diego, CA